ノイロトロピンの慢性疼痛に対する作用機序として、『セロトニン神経系及び脳由来神経栄養因子 (BDNF)を介して痛覚ー情動系の異常を改善することにより、負の情動変化(うつ様症状)を伴う慢性疼痛を寛解させる』ことが示されました。=2012 年 10 月 17 日、米国神経科学学会にて発表=

山口大学大学院医学系研究科・保健学科系学域・基礎検査学分野 石川敏三教授らのグループにより、ノイロトロピンがセロトニン神経系及び脳由来神経栄養因子 (BDNF)を介して痛覚ー情動系の異常を改善することで、負の情動変化(うつ様症状)を伴う慢性疼痛を寛解させることが明らかとなりました。この研究成果は、2012年10月13-17日に米国ルイジアナ州ニューオリンズで開催された米国神経科学学会(Neuroscience 2012)にて発表されました。

K. ISHIKAWA, S. YASUDA, Y. KISHISHITA, Y. IWANAGA, Y. IDA, R. OKAZAKI, M. KAWAMURA, T. TAKEDA, T. IBUKI, T. ISHIKAWA

Neurotropin® ameliorates chronic pain concurrent with depression-like behavior by preventing the derangements of pain-emotion and descending systems Program No.785.20.2012 Neuroscience Meeting Planner.

New Orleans, LA: Society for Neuroscience, 2012. Online.

ノイロトロピン®は痛覚ー情動系の異常を抑制することによりうつ様症状を伴う慢性疼痛を 寛解させる

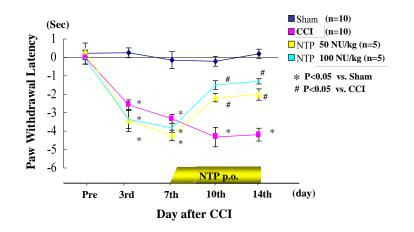
○要旨

【背景および目的】

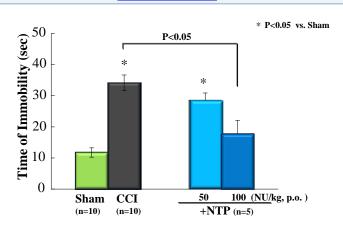
末梢神経損傷後の気分障害を伴う神経障害性疼痛は、生活の質(QOL)に悪影響を及ぼす重大な臨床的問題である。最近の研究では、脊髄での過度の神経伝達と、下行性抑制系に関連した痛覚ー情動系の異常との両方が、重要なメカニズムであると示唆されている。ノイロトロピン(NTP)は、ワクシニアウイルスを接種された家兎の炎症皮膚から分離された非たん白性の抽出物で、神経障害性疼痛の治療に使用されている。更に、NTPは下行性抑制系を活性化し得る。しかし、慢性疼痛における気分障害に対するNTPの防止効果及びその分子機構については、ほとんど知られていない。そこで、NTPがうつ様症状を伴う疼痛に対して鎮痛効果を発揮するかどうかを調べ、更に、疼痛ー辺縁系におけるBDNFと相互作用するセロトニン作動性下行性抑制系に対するNTPの調節作用について検討した。

【方法】

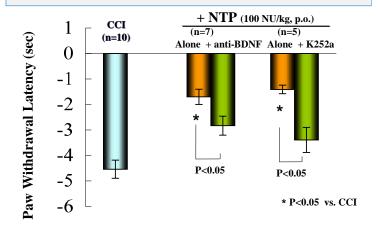
SDラットを用いて、慢性絞扼神経損傷(CCI)モデルを作製した。痛覚過敏は熱刺激で足を逃避するまでの反応時間(PWL, 秒)の軽減により評価した(足底のテスト)。うつ様症状は CCI作製後14日から21日まで強制水泳法(FST:不動時間、秒)により評価した。NTPは 50又は100 NU/kgの用量をCCI作製7日後より7日間連日経口投与した。抗BDNF抗体、 K252a、及び5,7-DHTは側脳室内投与した。実験終了後、脊髄及び脳の組織を採取し、免疫組織化学的測定(リン酸化ERK[細胞外シグナル制御キナーゼ])又は、逆転写ポリメラーゼ 連鎖反応法によるBDNFmRNA発現量測定を行った。

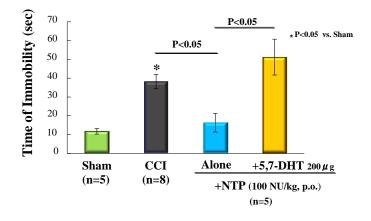

【結果】

NTPは、CCIラットで認められたPWLの減少(慢性疼痛)及び不動時間の増加(うつ様症状)を用量依存的に軽減した。更に、NTPは脊髄、前帯状回皮質及び海馬の関連領域におけるリン酸化ERK活性のCCI誘発過剰増加とBDNF mRNA発現の減少を減弱した。NTPの抗侵害受容及び抗うつ様作用の両方とも、セロトニン神経毒5,7-DHT、抗BDNF抗体又はBDNF受容体阻害剤K252aの側脳室内投与で有意に減弱された。

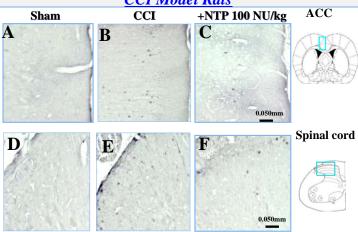

【結論】

NTPはうつ様症状を伴う慢性疼痛を寛解させ、これらの治療効果はセロトニン神経及びBDNFの阻害により減弱した。これらの結果は、NTPがセロトニン及びBDNFの相互作用を介して、セロトニン作動性下行性抑制系の活性化のみならず痛覚ー情動系も活性化し得ることを示唆している。NTPはうつ様症状を伴う慢性疼痛に対する治療薬として期待できる。

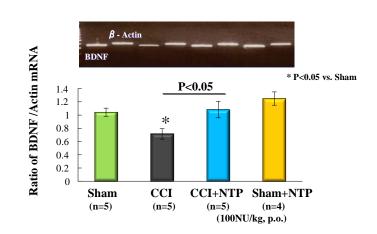

Analgesic Effect of NTP in CCI Model Rats


<u>Dose-dependent Anti-depressant Effects of NTP in</u> <u>CCI model rats</u>

Modulation of Analgesic Effect of NTP

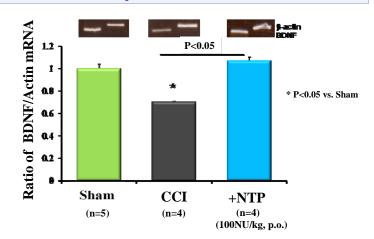

<u>Influence of 5-HTergic Nerve Denervation on</u> <u>Anti-Depressant Effect of NTP in CCI Model Rats</u>

Influence of anti-BDNF Antibody and K252a on Anti-Depressant Effect of NTP in CCI Model Rats


pERK Immunostaing of Sensory-Limbic System in CCI Model Rats


Effects of NTP on pERK1/2 Activation of Sensory-Limbic System in CCI Model Rats

Limbic System in CCI Model Rais				
CCI NTP	Regions	Sham	CCI	+NTP (100 NU/kg)
		(n=5)	(n=8)	(n=7)
	Spinal Cord (L ₃₋₅ Rexed I - II)	0 ± 0.0	10± 3.8*	2 ± 1.3#
	Sensory Cx. S1	1 ± 0.3	12 ± 1.7*	3 ± 0.8#
TO THE PARTY OF TH	Ant. Cingulate Cx. (ACC)	2 ± 0.6	23 ± 5.2*	10 ± 0.9#
8350	Hippocampus CA1-4, DG	2 ± 0.6	14 ± 2.7*	8 ± 1.6
	Amygdala	5 ± 2.2	20 ± 3.8*	13 ± 3.0#
	Hypothalamus	8 ± 1.9	26 ± 5.3*	14 ± 3.8
(8.00.3)	RVM	7 ± 5.6	17± 2.8*	12± 2.5#
	* P<0.05	vs. Sham	# P<	0.05 vs. CCI


Effect of NTP on BDNF mRNA Expression in ACC of CCI Model Rats

Effect of NTP on BDNF mRNA Expression in Hippocampus of CCI Model Rats

Effect of NTP on BDNF mRNA Expression in RVM of CCI Model Rats

